Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
1.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
2.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564658

RESUMO

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Assuntos
Reagentes de Ligações Cruzadas , Expressão Gênica , Globulinas , Hypocreales , Monofenol Mono-Oxigenase , Proteínas Recombinantes , Proteínas de Soja , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Reagentes de Ligações Cruzadas/isolamento & purificação , Reagentes de Ligações Cruzadas/metabolismo , Hypocreales/classificação , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Globulinas/química , Globulinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Eletroporação , Celulose , Sulfato de Amônio , Cromatografia em Gel , Precipitação Fracionada , Emulsões/química , Emulsões/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estabilidade Proteica , Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas , Óleos/química , Água/química
3.
Arch Virol ; 169(4): 78, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517587

RESUMO

Mycoviruses are viruses that infect fungi and oomycetes. They are widespread in all major groups of plant-pathogenic fungi and oomycetes. To date, only the full genome of dsRNA mycoviruses and the contigs of positive-sense single-stranded RNA (+ssRNA) mycoviruses have been reported in Ustilaginoidea virens, which is the notorious causal agent of rice false smut (RFS). Here, we report the molecular characterization of a novel +ssRNA mycovirus, Ustilaginoidea virens narnavirus 4 (UvNV4), isolated from U. virens strain Uv418. UvNV4 has a genome of 3,131 nucleotides (nt) and possesses an open reading frame (ORF) predicted to encode an RNA-dependent RNA polymerase (RdRp) of 1,017 amino acids (aa) sequence with a molecular mass of 116.6 kDa. BLASTp analysis revealed that the RdRp showed 50.34% aa sequence identity to that of the previously described Zhangzhou Narna tick virus 1. Phylogenetic analysis indicated that UvNV4 is closely related to members of the family Narnaviridae. Taken together, these results clearly demonstrate that UvNV4 is a novel +ssRNA virus infecting U. virens.


Assuntos
Micovírus , Hypocreales , Vírus de RNA , Filogenia , Genoma Viral , Hypocreales/genética , RNA Polimerase Dependente de RNA/genética , Fases de Leitura Aberta , RNA Viral/genética , Doenças das Plantas/microbiologia
4.
Appl Environ Microbiol ; 90(2): e0201523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299812

RESUMO

Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide (COS) for the assimilation of a sulfur compound. We found that the filamentous fungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the ß-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma.IMPORTANCEThe biological assimilation of gaseous CO2 and N2 involves essential processes known as carbon fixation and nitrogen fixation, respectively. In this study, we found that the fungus Trichoderma harzianum strain THIF08 can grow with gaseous carbonyl sulfide (COS), the most abundant and ubiquitous gaseous sulfur compound, as a sulfur source. When the fungus grew in these conditions, COS was assimilated into sulfur metabolites, and the key enzyme of this assimilation process is COS hydrolase (COSase), which specifically degrades COS. Moreover, the pathway was more energy efficient than the typical sulfate assimilation pathway. COSase genes are widely distributed in Ascomycota, Basidiomycota, and Mucoromycota and also occur in some Chytridiomycota, indicating that COS assimilation is widespread in fungi. Phylogenetic analysis of these genes revealed that the acquisition of COSase in filamentous fungi was estimated to have occurred at about 790-670 Ma, around the time that filamentous fungi transitioned to a terrestrial environment.


Assuntos
Hypocreales , Óxidos de Enxofre , Trichoderma , Gases , Dióxido de Carbono , Solo , Filogenia , Compostos de Enxofre , Enxofre/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Hidrolases/metabolismo , Sulfatos , Trichoderma/genética , Trichoderma/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338899

RESUMO

The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.


Assuntos
Hypocreales , MicroRNAs , Solanum lycopersicum , MicroRNAs/genética , MicroRNAs/metabolismo , Solanum lycopersicum/genética , Hypocreales/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala
6.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214578

RESUMO

Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.


Assuntos
Genoma Fúngico , Hypocreales , Hypocreales/genética , Genômica , Família Multigênica
7.
Virulence ; 15(1): 2301243, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240294

RESUMO

Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.


Assuntos
Hypocreales , Oryza , Oryza/microbiologia , Virulência , Hypocreales/genética , Estresse Fisiológico/genética , Doenças das Plantas/microbiologia
8.
Plant Dis ; 108(2): 473-485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669175

RESUMO

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in the world. A. bisporus wet bubble disease is one of the most severe diseases of white button mushrooms and is caused by the fungal pathogen Hypomyces perniciosus. The pathogen causes a drastic reduction in mushroom yield because of malformation and deterioration of the basidiomes. However, the mechanism of the button mushroom's malformation development after infection with H. perniciosus remains obscure. Therefore, to reveal the mechanism of A. bisporus malformation caused by H. perniciosus, the interaction between the pathogen and host was investigated in this study using histopathological, physiological, and transcriptomic analyses. Results showed that irrespective of the growth stages of A. bisporus basidiomes infected with H. perniciosus, the host's malformed basidiomes and enlarged mycelia and basidia indicated that the earlier the infection with H. perniciosus, the more the malformation of the basidiomes. Analyzing physiological and transcriptomic results in tandem, we concluded that H. perniciosus causes malformation development of A. bisporus mainly by affecting the metabolism level of phytohormones (N6-isopentenyladenosine, cis-zeatin, and N6-[delta 2-isopentenyl]-adenine) of the host's fruiting bodies rather than using toxins. Our findings revealed the mechanism of the button mushroom's malformation development after infection with H. perniciosus, providing a reference for developing realistic approaches to control mushroom diseases. Our results further clarified the interaction between A. bisporus and H. perniciosus and identified the candidate genes for A. bisporus wet bubble disease resistance breeding. Additionally, our work provides a valuable theoretical basis and technical support for studying the interaction between other pathogenic fungi and their fungal hosts.


Assuntos
Agaricus , Hypocreales , Transcriptoma , Melhoramento Vegetal , Agaricus/genética , Agaricus/metabolismo , Hypocreales/genética
9.
Plant Biotechnol J ; 22(1): 148-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715970

RESUMO

Rice false smut caused by Ustilaginoidea virens is a devastating rice (Oryza sativa) disease worldwide. However, the molecular mechanisms underlying U. virens-rice interactions are largely unknown. In this study, we identified a secreted protein, Uv1809, as a key virulence factor. Heterologous expression of Uv1809 in rice enhanced susceptibility to rice false smut and bacterial blight. Host-induced gene silencing of Uv1809 in rice enhanced resistance to U. virens, suggesting that Uv1809 inhibits rice immunity and promotes infection by U. virens. Uv1809 suppresses rice immunity by targeting and enhancing rice histone deacetylase OsSRT2-mediated histone deacetylation, thereby reducing H4K5ac and H4K8ac levels and interfering with the transcriptional activation of defence genes. CRISPR-Cas9 edited ossrt2 mutants showed no adverse effects in terms of growth and yield but displayed broad-spectrum resistance to rice pathogens, revealing a potentially valuable genetic resource for breeding disease resistance. Our study provides insight into defence mechanisms against plant pathogens that inactivate plant immunity at the epigenetic level.


Assuntos
Hypocreales , Oryza , Oryza/genética , Oryza/microbiologia , Histonas , Melhoramento Vegetal , Hypocreales/genética , Doenças das Plantas/microbiologia
10.
Pestic Biochem Physiol ; 196: 105599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945247

RESUMO

Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.


Assuntos
Hypocreales , MicroRNAs , Trichoderma , MicroRNAs/genética , Hypocreales/genética , Botrytis/genética , RNA Fúngico/genética , Trichoderma/genética , Regulação Fúngica da Expressão Gênica
11.
J Agric Food Chem ; 71(46): 17723-17732, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938806

RESUMO

Ustilaginoidea virens is a destructive phytopathogenic fungus that causes false smut disease in rice. In this study, the natural product 2,4-di-tert-butylphenol (2,4-DTBP) was found to be an environmentally friendly and effective agent for the first time, which exhibited strong antifungal activity against U. virens, with an EC50 value of 0.087 mmol/L. The scanning electron microscopy, fluorescence staining, and biochemical assays indicated that 2,4-DTBP could destroy the cell wall, cell membrane, and cellular redox homeostasis of U. virens, ultimately resulting in fungal cell death. Through the transcriptomic analysis, a total of 353 genes were significantly upregulated and 367 genes were significantly downregulated, focusing on the spindle microtubule assembly, cell wall and membrane, redox homeostasis, mycotoxin biosynthesis, and intracellular metabolism. These results enhanced the understanding of the antifungal activity and action mechanisms of 2,4-DTBP against U. virens, supporting it to be a potential antifungal agent for the control of false smut disease.


Assuntos
Hypocreales , Oryza , Antifúngicos/farmacologia , Hypocreales/genética , Fenóis/farmacologia , Oryza/genética , Doenças das Plantas/microbiologia
12.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894876

RESUMO

Rice false smut (RFS) caused by Villosiclava virens (anamorph: Ustilaginoidea virens) has become one of the most destructive fungal diseases to decrease the yield and quality of rice grains. An albino strain LN02 was isolated from the white RFS balls collected in the Liaoning Province of China in 2019. The strain LN02 was considered as a natural albino mutant of V. virens by analyzing its phenotypes, internal transcribed spacer (ITS) conserved sequence, and biosynthesis gene clusters (BGCs) for secondary metabolites. The total assembled genome of strain LN02 was 38.81 Mb, which was comprised of seven nuclear chromosomes and one mitochondrial genome with an N50 value of 6,326,845 bp and 9339 protein-encoding genes. In addition, the genome of strain LN02 encoded 19 gene clusters for biosynthesis of secondary metabolites mainly including polyketides, terpenoids and non-ribosomal peptides (NRPs). Four sorbicillinoid metabolites were isolated from the cultures of strain LN02. It was found that the polyketide synthase (PKS)-encoding gene uspks1 for ustilaginoidin biosynthesis in strain LN02 was inactivated due to the deletion of four bases in the promoter sequence of uvpks1. The normal uvpks1 complementary mutant of strain LN02 could restore the ability to synthesize ustilaginoidins. It demonstrated that deficiency of ustilaginoidin biosynthesis is the cause of albinism for RFS albino strain LN02, and V. virens should be a non-melanin-producing fungus. This study further confirmed strain LN02 as a white phenotype mutant of V. virens. The albino strain LN02 will have a great potential in the development and application of secondary metabolites. The physiological and ecological functions of ustilaginoidins in RFS fungus are needed for further investigation.


Assuntos
Hypocreales , Oryza , Oryza/genética , Hypocreales/genética , Hypocreales/metabolismo , Família Multigênica , Variação Genética , Doenças das Plantas/microbiologia
13.
Org Lett ; 25(41): 7470-7475, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37797949

RESUMO

Indole terpenoids make up a large group of secondary metabolites that display an enticing array of bioactivities. While indole diterpene (IDT) and rarely indole sesquiterpene (IST) pathways have been found individually in filamentous fungi, here we show that both cluster types are encoded within the genome of Tolypocladium album. Through heterologous reconstruction, we demonstrate the SES cluster encodes for IST biosynthesis and can tailor IDT substrates produced by the TER cluster.


Assuntos
Diterpenos , Hypocreales , Terpenos , Família Multigênica , Hypocreales/genética , Diterpenos/metabolismo , Indóis/metabolismo
14.
Microbiol Res ; 275: 127469, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543005

RESUMO

The genus Trichoderma comprises more than 500 valid species and is commonly used in agriculture for the control of plant diseases. In the present study, a Trichoderma species isolated from Scleronema micranthum (Malvaceae) has been extensively characterized and the morphological and phylogenetic data support the proposition of a new fungal species herein named Trichoderma agriamazonicum. This species inhibited the mycelial growth of all the nine phytopathogens tested both by mycoparasitism and by the production of VOCs, with a highlight for the inhibition of Corynespora cassiicola and Colletotrichum spp. The VOCs produced by T. agriamazonicum were able to control Capsicum chinense fruit rot caused by Colletotrichum scovillei and no symptoms were observed after seven days of phytopathogen inoculation. GC-MS revealed the production of mainly 6-amyl-α-pyrone, 1-octen-3-ol and 3-octanone during interaction with C. scovillei in C. chinense fruit. The HLPC-MS/MS analysis allowed us to annotate trikoningin KBII, hypocrenone C, 5-hydroxy-de-O-methyllasiodiplodin and unprecedented 7-mer peptaibols and lipopeptaibols. Comparative genomic analysis of five related Trichoderma species reveals a high number of proteins shared only with T. koningiopsis, mainly the enzymes related to oxidative stress. Regarding the CAZyme composition, T. agriamazonicum is most closely related to T. atroviride. A high protein copy number related to lignin and chitin degradation is observed for all Trichoderma spp. analyzed, while the presence of licheninase GH12 was observed only in T. agriamazonicum. Genome mining analysis identified 33 biosynthetic gene clusters (BGCs) of which 27 are new or uncharacterized, and the main BGCs are related to the production of polyketides. These results demonstrate the potential of this newly described species for agriculture and biotechnology.


Assuntos
Hypocreales , Trichoderma , Trichoderma/metabolismo , Filogenia , Espectrometria de Massas em Tandem , Hypocreales/genética
15.
BMC Genomics ; 24(1): 454, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568116

RESUMO

BACKGROUND: Trichoderma is a diverse genus of fungi that includes several species that possess biotechnological and agricultural applications, including the biocontrol of pathogenic fungi and nematodes. The mitochondrial genome of a putative strain of Trichoderma harzianum called PAR3 was analyzed after isolation from the roots of Scarlet Royal grapevine scion grafted to Freedom rootstock, located in a grapevine vineyard in Parlier, CA, USA. Here, we report the sequencing, comparative assembly, and annotation of the nuclear genome of PAR3 and confirm its identification as a strain of T. harzianum. We subsequently compared the genes found in T. harzianum PAR3 to other known T. harzianum strains. Assembly of Illumina and/or Oxford Nanopore reads by the popular long-read assemblers, Flye and Canu, and the hybrid assemblers, SPAdes and MaSuRCA, was performed and the quality of the resulting assemblies were compared to ascertain which assembler generated the highest quality draft genome assembly. RESULTS: MaSuRCA produced the most complete and high-fidelity assembly yielding a nuclear genome of 40.7 Mb comprised of 112 scaffolds. Subsequent annotation of this assembly produced 12,074 gene models and 210 tRNAs. This included 221 genes that did not have equivalent genes in other T. harzainum strains. Phylogenetic analysis of ITS, rpb2, and tef1a sequences from PAR3 and established Trichoderma spp. showed that all three sequences from PAR3 possessed more than 99% identity to those of Trichoderma harzianum, confirming that PAR3 is an isolate of Trichoderma harzianum. We also found that comparison of gene models between T. harzianum PAR3 and other T. harzianum strains resulted in the identification of significant differences in gene type and number, with 221 unique genes identified in the PAR3 strain. CONCLUSIONS: This study gives insight into the efficacy of several popular assembly platforms for assembly of fungal nuclear genomes, and found that the hybrid assembler, MaSuRCA, was the most effective program for genome assembly. The annotated draft nuclear genome and the identification of genes not found in other T. harzainum strains could be used to investigate the potential applications of T. harzianum PAR3 for biocontrol of grapevine fungal canker pathogens and as source of anti-microbial compounds.


Assuntos
Hypocreales , Trichoderma , Filogenia , Trichoderma/genética , Hypocreales/genética , Genoma Fúngico
16.
Mol Cell Proteomics ; 22(8): 100616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442371

RESUMO

Lysine ß-hydroxybutyrylation (Kbhb) is an evolutionarily conserved and widespread post-translational modification that is associated with active gene transcription and cellular proliferation. However, its role in phytopathogenic fungi remains unknown. Here, we characterized Kbhb in the rice false smut fungus Ustilaginoidea virens. We identified 2204 Kbhb sites in 852 proteins, which are involved in diverse biological processes. The mitogen-activated protein kinase UvSlt2 is a Kbhb protein, and a strain harboring a point mutation at K72, the Kbhb site of this protein, had decreased UvSlt2 activity and reduced fungal virulence. Molecular dynamic simulations revealed that K72bhb increases the hydrophobic solvent-accessible surface area of UvSlt2, thereby affecting its binding to its substrates. The mutation of K298bhb in the septin UvCdc10 resulted in reduced virulence and altered the subcellular localization of this protein. Moreover, we confirmed that the NAD+-dependent histone deacetylases UvSirt2 and UvSirt5 are the major enzymes that remove Kbhb in U. virens. Collectively, our findings identify regulatory elements of the Kbhb pathway and reveal important roles for Kbhb in regulating protein localization and enzymatic activity. These findings provide insight into the regulation of virulence in phytopathogenic fungi via post-translational modifications.


Assuntos
Hypocreales , Oryza , Virulência , Hypocreales/genética , Processamento de Proteína Pós-Traducional , Mutação , Doenças das Plantas/microbiologia
17.
Virulence ; 14(1): 2235460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450576

RESUMO

Rice false smut caused by Ustilaginoidea virens is becoming one of the most devastating diseases in rice production areas in the world. Revealing U. virens potential pathogenic mechanisms provides ideas for formulating more effective prevention and control strategies. Sucrose non-fermenting 1 (Snf1) protein kinase plays a critical role in activating transcription and suppressing gene expression, as well as in cellular response to various stresses, such as nutrient limitation. In our study, we identified the Snf1 homolog UvSnf1 and analyzed its biological functions in U. virens. The expression level of UvSnf1 was dramatically up-regulated during invasion, indicating that UvSnf1 may participate in infection. Phenotypic analyses of UvSnf1 deletion mutants revealed that UvSnf1 is necessary for hyphae growth, spore production, and virulence in U. virens. Moreover, UvSnf1 promotes U. virens to use unfavorable carbon sources when the sucrose is insufficient. In addition, deletion of UvSnf1 down-regulates the expression of the cell wall-degrading enzymes (CWDEs) genes under sucrose limitation conditions in U. virens. Further analyses showed that CWDEs (UvCut1 and UvXyp1) are not only involved in growth, spore production, and virulence but are also required for the utilization of carbon sources. In conclusion, this study demonstrates that UvSnf1 plays vital roles in virulence and carbon source utilization in U. virens, and one of the possible mechanisms is playing a role in regulating the expression of CWDE genes.


Assuntos
Hypocreales , Proteínas Quinases , Virulência/genética , Sacarose , Hypocreales/genética , Doenças das Plantas
18.
J Agric Food Chem ; 71(30): 11502-11519, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471583

RESUMO

Natural products biosynthesized from biocontrol fungi in the rhizosphere can have both beneficial and deleterious effects on plants. Herein, we performed a comprehensive analysis of natural product biosynthetic gene clusters (BGCs) from the widely used biocontrol fungus Trichoderma afroharzianum T22 (ThT22). This fungus encodes at least 64 BGCs, yet only seven compounds and four BGCs were previously characterized or mined. We correlated 21 BGCs of ThT22 with known primary and secondary metabolites through homologous BGC comparison and characterized one unknown BGC involved in the biosynthesis of eujavanicol A using heterologous expression. In addition, we performed untargeted transcriptomics and metabolic analysis to demonstrate the activation of silent ThT22 BGCs via the "one strain many compound" (OSMAC) approach. Collectively, our analysis showcases the biosynthetic capacity of ThT22 and paves the way for fully exploring the roles of natural products of ThT22.


Assuntos
Produtos Biológicos , Hypocreales , Perfilação da Expressão Gênica , Hypocreales/genética , Família Multigênica , Vias Biossintéticas/genética
19.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373534

RESUMO

Rice false smut caused by Ustilaginoidea virens is one of the most devastating diseases in rice worldwide, which results in serious reductions in rice quality and yield. As an airborne fungal disease, early diagnosis of rice false smut and monitoring its epidemics and distribution of its pathogens is particularly important to manage the infection. In this study, a quantitative loop-mediated isothermal amplification (q-LAMP) method for U. virens detection and quantification was developed. This method has higher sensitivity and efficiency compared to the quantitative real-time PCR (q-PCR) method. The species-specific primer that the UV-2 set used was designed based on the unique sequence of the U. virens ustiloxins biosynthetic gene (NCBI accession number: BR001221.1). The q-LAMP assay was able to detect a concentration of 6.4 spores/mL at an optimal reaction temperature of 63.4 °C within 60 min. Moreover, the q-LAMP assay could even achieve accurate quantitative detection when there were only nine spores on the tape. A linearized equation for the standard curve, y = -0.2866x + 13.829 (x is the amplification time, the spore number = 100.65y), was established for the detection and quantification of U. virens. In field detection applications, this q-LAMP method is more accurate and sensitive than traditional observation methods. Collectively, this study has established a powerful and simple monitoring tool for U. virens, which provides valuable technical support for the forecast and management of rice false smut, and a theoretical basis for precise fungicide application.


Assuntos
Hypocreales , Oryza , Oryza/genética , Doenças das Plantas/microbiologia , Hypocreales/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Front Cell Infect Microbiol ; 13: 1181287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124038

RESUMO

Sarocladium terricola is a species of ascomycete fungus that has been recognized as a biocontrol agent for managing animal and plant pathogens, and exhibits significant potential as a feed additive. In this study, we utilized a combination of short-read Illumina sequencing and long-read PacBio sequencing to sequence, assemble, and analyze the genome of S. terricola. The resulting genome consisted of 11 scaffolds encompassing 30.27 Mb, with a GC content of 54.07%, and 10,326 predicted protein coding gene models. We utilized 268 single-copy ortholog genes to reconstruct the phylogenomic relationships among 26 ascomycetes, and found that S. terricola was closely related to two Acremonium species. We also determined that the ergosterol content of S. terricola was synthesized to nearly double levels when cultured in potato dextrose media compared to bean media (4509 mg/kg vs. 2382 mg/kg). Furthermore, transcriptome analyses of differentially expressed genes suggested that the ergosterol synthesis genes ERG3, ERG5, and ERG25 were significantly up-regulated in potato dextrose media. These results will help us to recognize metabolic pathway of ergosterol biosynthesis of S. terricloa comprehensivelly.


Assuntos
Ascomicetos , Hypocreales , Transcriptoma , Hypocreales/genética , Ascomicetos/genética , Ergosterol , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...